Presentation Abstract

Program#/Poster#: 610.16/FFF74

Presentation Title: Autopatcher application to single cell RNA analysis and optogenetic cell type identification

Location: Hall F-J

Presentation time: Tuesday, Oct 16, 2012, 11:00 AM -12:00 PM

Authors: *S. B. KODANDARAMAIAH*1,2, I. WICKERSHAM3, S. R. BATES2, A. S. CHUONG2, M. OGAWA3, M. V. BARATTA3, N. KLAPOETKE4, G. HOLST1, L. C. ACKER5,6, F. YOSHIDA2, P. E. MONAHAN2, C. R. FOREST1, E. S. BOYDEN2;

Abstract: Much of the current work in neuroscience is aimed at revealing how different cell types of the brain work together in a circuit to implement brain computations as well as how different cell types go awry in brain disorders. Current techniques used to measure the activity of single cells in vivo are predominantly extracellular; and rely on spike timing and waveform characteristics, to determine the cell type of neurons being recorded. These are however, subjected to sampling biases and vary depending on brain state and region. Intracellular techniques such as whole cell patch clamping, on the other hand, enable the measurement of sub-threshold membrane potential deflections in individual cells. This property can thus be used along with optogenetics to identify cell types being recorded from by directly measuring induced photocurrents or lack there of, due to light stimulation. Additionally, whole cell patch clamping allows access to the intracellular contents of the cell being recorded from, thus enabling the extraction of the cells cytoplasmic contents for single cell molecular and transcriptomic analyses via RT-PCR. We here present two extensions to the Autopatcher (Kodandaramaiah, S. B., et al, Nature Methods 2012). We have combined the Autopatcher with
optogenetic stimulation hardware to allow perturbation of specific cell types optically while recording distributed subthreshold membrane potential fluctuations. This technique can be used to reliably obtain whole cell recordings from Channelrhodopsin-2 (ChR2) and Archaeorhodopsin-3 (Arch) expressing neurons up to depths of 2 mm in the mouse brain in an automated fashion. Upon light stimulation, non-optogenetic molecule expressing neurons can be distinguished from optogenetic molecule expressing neurons by the lack of directly induced photocurrents upon light stimulation, making this a simple yet effective means of identifying the cell type of neuron being recorded.

Further, we are working on developing the automated patch clamping algorithms for programmed and optimized harvesting of cytoplasmic contents of the recorded cells in a manner which is compatible morphological analysis via biocytin staining. These developments will result in an easy-to-use tool that enables the integrative phenotyping of cells of the brain - namely, a robot that can acquire simultaneously the gene expression patterns, morphologies, and electrophysiological properties of single cells in brain tissue, in an automated fashion.

Disclosures:

Keyword(s): Autopatcher
PATCH CLAMP
optogenetics

Support:
Jerry and Marge Burnett; Human Frontiers Science Program
IET A. F. Harvey Prize
McGovern Institute; MIT Media Lab
George W. Woodruff School of Mechanical Engineering, Georgia Tech
NIH Director’s New Innovator Award (1DP2OD002002) and other NIH grants

2012 Copyright by the Society for Neuroscience all rights reserved. Permission to republish any abstract or part of any abstract in any form must be obtained in writing by SfN office prior to publication.